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a b s t r a c t

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. Accurate diagnosis
of mild cognitive impairment (MCI) in the prodromal stage of AD can delay onset. Therefore, the
early diagnosis of AD is particularly essential. The convolutional neural network (CNN) extracts feature
of image layer-by-layer, and the observed features are obtained by setting different receptive fields.
However, the brain structure is very complicated, and the etiology of AD is unknown, in addition, most
of the existing methods do not consider the details and overall structure of the image. To address
this issue, we propose a novel multi-scale convolutional neural network (MSCNet) to enhance the
model’s feature representation ability. A channel attention mechanism is introduced to improve the
interdependence between channels and adaptively recalibrate the channel direction’s characteristic
response. To verify the effectiveness of our method, we segment the original MRI data to obtain white
matter (WM) and gray matter (GM) datasets and train the model. Extensive experiments show that
our method obtains the state-of-the-art performance with fewer parameters and lower computational
complexity.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative sickness, ac-
ompanied by cognitive impairment and behavioral defects. It can
e classified as Mild Cognitive Impairment (MCI), Normal Control
NC) and AD according to clinical symptoms [1,2]. The number
f people with dementias has witnessed a sharp increased with
he aging of the global population. Research showed that approxi-
ately 50 million people suffered from dementia, and 60% to 70%
f the population had AD in 2018 [3–5]. Therefore, early diagnosis
nd intervention (such as treatment) can delay the onset of AD.
Medical imaging technology has made unprecedented

rogress, and neuroimaging has gradually become the primary
pplication of computer-aided diagnosis. Among them, magnetic
esonance imaging (MRI) has been widely employed in the di-
gnosis of AD due to its high-resolution, non-invasive, and multi-
irectional imaging. It also can distinguish soft tissues and clearly
isplay normal anatomical structures of the brain, such as white
atter (WM) and gray matter (GM) [6,7]. GM in the brain is
ainly composed of neuron cells and plays a dominant role in the
erve center. The thinking signals in human brain are generated
n GM, and the nerve fibers that constitute WM are responsible
or the transmission of nerve impulses. Researchers found that
he brain MRI of patients diagnosed with AD is accompanied by
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E-mail address: rslan2016@163.com (R. Lan).
ttps://doi.org/10.1016/j.knosys.2021.107942
950-7051/© 2021 Elsevier B.V. All rights reserved.
varying degrees of WM-damage and GM-atrophy, which is also an
important indicator in the clinic [8,9]. In order to explore the ef-
fectiveness of GM and WM in the diagnosis of AD, corresponding
experiments are carried out in this work.

In the past few decades, machine learning has been widely
used in AD diagnosis, which extracts the required features from
AD data to fit the model and forecast unknown data categories.
Generally, AD is diagnosed by manually extracting the charac-
teristics of the region of interest (ROI), such as temporal lobe,
entorhinal cortex volume, bilateral hippocampus, GM, WM, and
thickness structure changes, etc. [10,11]. In addition, AD re-
searchers have also made great efforts in the multi-modal multi-
task learning. For example, Sheng et al. [12] used the combina-
tion of multimodal segmentation of the joint human connective
project and logistic regression-recursive feature elimination to
accurately identify the different stages of AD. Zeng et al. [13] pro-
posed a multi-task learning algorithm based on deep confidence
network (DBN). Through feature selection method of multi-task,
the intrinsic correlation between multiple related tasks is con-
sidered and feature sets related to all tasks are selected. Dropout
technology and zero masking strategy are used to overcome the
problem of model overfitting. Lodewijk et al. [14] proposed a joint
multimodal longitudinal regression and classification method for
early diagnosis of AD. Prakash et al. [15] trained single-mode and
multi-mode regression models based on baseline data including
demographic, neuroimaging, cerebrospinal fluid markers, and
genetic factors to predict future ADAS-COG scores. The process is

https://doi.org/10.1016/j.knosys.2021.107942
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elatively cumbersome, and the classification performance needs
o be improved. If the method can automatically generate ex-
racted features, it will solve the inaccuracy caused by manual
eature extraction and significantly improve work efficiency.

Recently, deep learning has performed well in natural image
lassification, recognition, and detection [16–18]. It can automati-
ally extract features without manual preprocessing. Researchers
ound that convolutional neural network (CNN) can also be used
o extract medical image features for analysis [19]. Although
NN-based methods have been gradually used in AD diagnosis,
here are still some limitations that need to be solved urgently. (1)
he brain MRI structure is relatively complicated, and the cause of
D is not fully understood, most of the existing CNN-based meth-
ds are single scale representative features, and it is impossible to
nalyze the image information on the deep structure. (2) Most of
he deformation of CNN is only stretched in the depth and width
f the network structure, resulting in the model parameters that
re too large to be used in practical applications.
In this paper, a novel multi-scale convolutional neural network

MSCNet) model for AD diagnosis was put forward. Unlike most
xisting CNN models, to avoid single-level of feature extraction
nd take full advantage of the efficiency of CNN, we provide a
ulti-scale structure and introduce an attention mechanism to
ouble-weight the learned weight of neural network. The exper-
mental results on WM and GM datasets show the effectiveness
f our method, and verify that WM is more effective than GM in
D diagnosis. The main contributions are as follows.
(1) We propose a discriminative feature representation

ethod for MRI of AD. A novel multi-scale residual block (MSRB),
hich does not rely on multiple convolution kernels of different
izes, and achieves the effectiveness of changing the size of the
onvolution kernel by setting different dilation rates, is used
o extract multi-scale features and fuse the features between
hannels to obtain more comprehensive information.
(2) To improve the classification performance, a channel at-

ention mechanism with global average pooling and global max-
mum pooling was introduced to learn the dependency rela-
ionship between each channel and assign corresponding weight
oefficients.
(3) A unite network based on multi-scale convolutional neural

etwork (MSCNet-U) is employed to solve the label expansion
roblem caused by slicing on the 3D volume.
The rest of this paper is organized as follows. In Section 2, we

riefly review some related works of CNN in AD diagnosis and the
ulti-scale feature structure. In Section 3, the data preprocessing
nd the proposed method are described in detail. Section 4 shows
he comparative results. Finally, the conclusion of this paper is
rawn in Section 5.

. Related works

.1. CNN-based diagnosis of Alzheimer’s disease

In recent years, AD diagnosis based on CNN has achieved
ood performance [20,21], and end-to-end training saves a large
umber of feature extraction operations. Sarraf et al. [22] used
eNet-5, one of the earliest convolutional neural networks, to
rain the AD/NC on the functional magnetic resonance imag-
ng (fMRI) dataset, and the classification results was 96.86%. To
elieve overfitting, Billones et al. [23] added a dropout after
ach pooling layer of VGG-16 to classify the AD/MCI/NC, and
he accuracy was 91.85%. Farooq et al. [24] trained GoogLeNet,
esNet-18, and ResNet-152 on GM datasets, and all ran well.
athiyamoorthi et al. [25] first preprocessed the image by adap-
ive histogram adjustment and 2D adaptive bilateral filter (2D-
BF), and then extracted the region of interest using the adaptive
2

mean shift modified expectation maximization (AMS-MEM) al-
gorithm. Finally, the 2-Dimensional Gray Level Co-Occurrence
Matrix (2D-GLCM) was used to calculate the features and the
classification decision was made by deep convolutional neural
network. Almadhoun et al. [26] passed the entire brain image
by the transmission of Xception learning architectures and then
CNN, which is constructed by separable convolutional layer, was
used to learn the general features of the image, and classifies
them. Abdulazeem et al. [27] proposed an end-to-end framework
for AD-classification based on CNN, realizing multi-classification
at different stages of AD. Bringas et al. [28] employed CNN to
analyze data from 35 patients with AD collected by smartphone,
and found that mobility data can be a valuable resource for the
treatment of patients with AD as well as to study the progress
of the disease. Bae et al. [29] developed a convolutional neural
network (CNN)-based AD classification algorithm using magnetic
resonance imaging (MRI) scans from AD patients and age/gender-
matched cognitively normal controls from two populations that
differ in ethnicity and education level. Basheera et al. [9] used
hybrid enhanced independent component analysis to collect seg-
mented gray matter mri image, and then differentiation MCI and
CN more accurately by CNN to escalate early diagnosis of AD.

Researchers [5,30] have found that the information of various
modalities can complement each other and obtain better re-
sults. Khvostikov et al. [31] proposed an improved 3D-CNN based
on twin network which inputs n features of ROI of structural
magnetic resonance imaging (sMRI) and diffusion tensor imaging
(DTI) images into the pipeline in parallel. Then the features ob-
tained by the n pipelines were passed through the flattened layer
to obtain n vectors and spliced. Finally, the result was output
through the fully connected layer (FC), dropout, and Softmax
layer. Like multi-modal data information complementation, in-
tegrated learning combines multiple weakly supervised models
to obtain a better and more comprehensive strongly supervised
model. Kumar et al. [32] fine-tuned AlexNet and GoogLeNet to
integrate with the AD dataset, and the final classification results
were better than those of the single network. Feng et al. [33]
combined three-dimensional convolutional neural networks (3D-
CNNs) with MRI to execute binary and ternary disease classi-
fication models. Xia et al. [34] exploited a 6-layer 3D CNN to
learn informative features of sMRI, then 3D CLSTM is leveraged
to further extract the channel-wise higher-level information to
realize AD diagnosis. Parmar et al. [35] presented one such syn-
ergy of fMRI and deep learning, where using a modified 3D-CNN
to resting-state fMRI data for feature extraction and classification
of AD. Folego et al. [36] proposed an end-to-end deep 3D CNN for
the multiclass AD biomarker identification task, using the whole
image volume as input. Shmulev [37] and Senanayake [38] built
3D-ResNet and 3D-DenseNet, respectively, but their experimental
results were not satisfactory. However, the small number of MRI
data make the 3DCNN-based network difficult to fit completely.
At the same time, the network has larger number of parameters
and longer training time. Therefore, we propose a lightweight
network for end-to-end training in this paper.

2.2. Multi-scale network

Multi-scale networks can extract different feature information
of ROI at different scales, including the information of both local
and global. It is proven that improves the performance of the
models in many areas [39,40], such as image classification [41],
target detection [42–44] and segmentation [45,46].

Before the emergence of Inception [41] networks, most CNNs
[47,48] achieved better performance by stacking convolutional
layers and deepening the number of network layers, but this will
inevitably lead to a considerable increase in the number of calcu-
lations. Due to the different positions of the image information,
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he choice of the size of the convolution kernel is more challeng-
ng. If the image information distribution is global, it is suitable
or the case where the convolution kernel is large. Conversely, it
s suitable for smaller convolution kernels. The inception module
ses 1 × 1, 3 × 3, and 5 × 5 convolution kernels and pooling
n the same layer network to obtain different sizes receptive
ields of the image. Finally, the channels are superimposed so that
he features of different scales are fused and passed to the next
ayer. Gao et al. [49] proposed a new deep learning multi-scale
tructure Res2Net. It reconstructs the bottleneck block in ResNet,
eplacing the 1 − 3 − 1 residual distribution with a hierarchical
tructure. In this module, the central convolution is divided into
ultiple groups. A group of filters first extracts features from a
et of input feature maps. Then the output feature maps of the
revious group are sent to the next set of filters together with
nother set of input feature maps. This process is repeated several
imes until all input feature maps have been processed. Finally,
he feature maps of all groups are concatenated and sent to
nother 1 × 1 filter to thoroughly merge the information. These
ulti-scale structures perform well, but the network structure

s more complex and has more parameters. Liu et al. [50] pro-
osed a multi-scale multi-view re-sampling and color projection
ethod for nodules, and applied it to process CT images. Zhu
t al. [51] used filters of the same size to carry out multi-layer
onvolution and combined extended convolution with common
onvolution at different rates to design multi-scale modules to
nrich features extracted from multi-layer convolution. In ad-
ition, multi-layer convolution and residual block cascade are
sed for image denoising. Ibtissam et al. [52] employed gaussian
yramid representation for multi-scale analysis to distinguish
etween normal and abnormal breast tissues. In this paper, we
ropose a simple, efficient, and lightweight multi-scale structure
or diagnosing brain medical images.

. Material and method

In this section, we will introduce the experimental materi-
ls and preprocess method, then analyze the framework of our
ethod in detail, and finally the activation function and loss

unction are presented.

.1. Material

Statistical parametric mapping (SPM), a medical statistical
nalysis software [53], is used to preprocess the MRI brain image
ata. The pipeline of data preprocess is shown in Fig. 1.
First, slice timing is employed on the original data to correct

he difference in acquisition time between layers in a volume.
hen, the head movement correction is used to eliminate slight
ead movement during the test, so that each frame of the exper-
mental sequence is aligned with the first frame of the sequence.
ext, to unify the data input size during training, the data need to
e resampled, and the data size is adjusted to size during training,
he data need to be resampled, and the data size is adjusted to
92 × 192×160. The above is the medical professional processing
low for the AD dataset, which is recorded as stage I. Then,
he tissue structure of the resampled 3D MRI was segmented,
nd WM and GM datasets were selected from the divided parts.
inally, Python and tools for Nifti and analyzing images were used
o slice the GM and WM, which were recorded as stage II.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [54] was
stablished in 2003 to collect brain imaging data from mul-
iple modalities, such as structural magnetic resonance imag-
ng (sMRI), functional magnetic resonance imaging (fMRI), and
ositron emission computed tomography (PET). There are many

ypes of data in the ADNI, such as AD, MCI, NC, etc. Furthermore,

3

Table 1
The accuracy and running time obtained in the MCI/NC of WM for slices 8, 12,
16, 20, 24, 28, 32 and 36.
Slice 8 12 16 20 24 28 32 36

Acc (%) 86.89 88.94 90.28 90.83 90.85 90.87 90.85 90.86
Time (ms) 44.69 46.38 47.69 49.25 55.98 59.64 63.39 70.04

Table 2
The accuracy in the MCI/NC of WM for randomly select 20 slices
and continuously select the middle 20 slices.
Slice 20r 20c

ACC (%) 72.31 90.83

ADNI will regularly track and update the dataset of the pre-
diagnosed population. The initial MRI data of AD that used in
the experiment including 160 AD, 200 MCI, and 160 NC were
all from the ADNI. The data was preprocessed by SPM, and the
clearest brain structures were taken as the experimental WM
and GM datasets. The AD dataset is shown in Fig. 2. The ratio of
training subsets to test subsets in our experiment is 7:3. When
training and testing, we strictly divided the training subsets and
test subsets according to the slices under the same volume.

One piece of 3D data can be sliced into 160 pieces when
we sliced, and we found that only the middle slices had rel-
atively complete structural information. In order to determine
the optimal number of slices, intermediate continuous slices of
8,12,16,20,24,28,32, and 36 were selected for comparison. The re-
sults of 8, 12, 16, 20, 24, 28, 32 and 36 slice are shown in Table 1,
We can easily find that when the number of slices exceeds 20,
the classification accuracy of the model is similar, but the training
time is greatly increased. When the number of slices ranged from
8 to 20, both the classification accuracy and training accuracy
increased but the running time increased slightly. Therefore, we
select 20 consecutive and intermediate slice images in each 3D
MRI and there are a total of 10,400 images for all classes.

In addition, we also randomly selected 20 images for experi-
ments to determine the rationality of our selection method. The
accuracy in the MCI/NC of WM is shown in Table 2. Among
them, 20r represents randomly select 20 slices and 20c represents
continuously select the middle 20 slices. Due to the selection
of continuous middle 20 slices contained relatively complete
structural information, so our method is more efficient and more
reasonable.

3.2. Network architecture

Based on the multi-scale residual block integrated attention
mechanism (MSAM), we proposed a novel AD diagnosis model,
denoted as the multi-scale convolutional neural network (MSC-
Net) which can divide into five main convolutional blocks. We
use ResNet-50 as the backbone network structure of MSCNet, the
structure of MSCNet is shown in Fig. 3. The first convolution raises
the number of channels of the network from 3 to 64, and the
remaining convolution blocks are composed of MSAM modules.
The number of channels is 64, 128, 256, and 512 in sequence, and
the corresponding number of MSAM channels is 3, 4, 6, and 3.

Additionally, in order to solve the problem of label expansion
caused by slicing on the 3D volume, we propose a multi-slice
feature unite network based on MSCNet, denoted as MSCNet-
U. The structure of MSCNet-U is shown in Fig. 4, there are 20
pipelines in MSCNet-U, and each pipeline has the same structure
and parameters. We use the 3D volume obtained by putting the
20 slices into a separate pipeline, merge the feature vectors in the
last layer of convolution operation.
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Fig. 1. The pipeline of data preprocess.
Fig. 2. The left, middle and right columns are AD, MCI, and NC, respectively.
Fig. 3. The structure of MSCNet.
1) Residual neural network
ResNet is a convolutional neural network structure proposed

y He et al. [55] in the 2015 ILSVRC competition and won first
lace in the competition. The emergence of ResNet solved the
roblem of deepening the number of layers of the network. Under
4

the effect of the chain rule, the gradients are continuously mul-
tiplied, and eventually the problems of gradient disappearance,
gradient explosion and network degradation. The residual block
of ResNet-50, which is the bottleneck block, is shown in Fig. 5.
The residual network uses the ‘‘shortcut connecting’’ method to
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Fig. 4. Multi-slice feature unite network based on MSCNet (MSCNet-U).
Fig. 5. The bottleneck block of ResNet-50.

end the current output to the next layer of the network, skipping
his layer of operations without increasing the parameters. In
he process of backpropagation, the gradient of the next layer
f network is transferred to the previous network, which solves
he problem of the disappearance of the gradient of the deep
etwork. However, ResNet cannot characterize a specific aspect
f the data, such as multi-scale and weights between channels.
herefore, it is particularly important to improve ResNet to make
t suitable for actual data processing.

2) Multi-Scale Residual Block
The multi-scale feature representation of CNN performs well

n computer vision tasks, such as target detection, semantic seg-
entation, and image classification. In addition, the MRI brain
ata used for the diagnosis of AD are difficult to identify due
o their complex structure and numerous tissues. Moreover, the
tiology of AD has not been known up to now, and it is impossible
o extract the disease characteristics accurately. Multi-scale fea-
ure can extract more comprehensive information of image, and

he extracted features are more advanced, which can effectively

5

enhance the performance of the model. Most CNN-based ADmod-
els are simple invoking, without corresponding improvements to
MRI data, and without considering multi-scale features.

In this paper, we propose a simple but efficient multi-scale
structure to extract features of MRI images. Unlike the 3 × 3
convolution in the bottleneck block 1−3−1 structure to extract
features, we tend to divide the filters in the 3 × 3 convolution
into smaller filter groups, and at the same time, a residual hybrid
connection between groups is made to enhance the relationship
between features. After 1 × 1 convolution, we divide the 3 × 3
convolution kernels with n channels into s groups of parallel
smaller convolution kernel groups, denoted by Xi, where i ∈

{1, 2, . . . , s}. Each feature subset Xi has n
s channels. For the case

where s is equal to 4, each Xi through a 3 × 3 dilated convolu-
tion [56], and the dilation rate is 1, 2, 3, and 5, denoted by Dconv
3 ∗ 3(Xi). Each group Xi has a corresponding dilated convolution,
and the output feature map is recorded as Si. The dilation rate in
dilated convolutions is the distance between convolution kernels.
If the dilation rate is 1, it is the same as the ordinary convolution.
Increasing the dilation rate can increase the receptive field and
reduce the amount of calculation. We use dilated convolutions
with different dilation rates in the same layer network to obtain
receptive fields of different sizes and capture multi-scale context
information better. Additionally, to fuse different scale informa-
tion of the same layer network and comprehensively improve
the feature hierarchy, we will mix and superimpose each Xi and
denote by Yi.

Si = Dconv3∗3 (Xi) , 1 ≤ i ≤ s (1)

Yi =

s∑
i=1

Si, 1 ≤ i ≤ s (2)

After the concatenate operation on the feature map of the
s group, the resulting feature map is sent into the 1 × 1 con-
volution and then sent to the Squeeze-and-Excitation (SE) [57]
module to calculate the weight relationship between the chan-
nels. In Section 4, ablation study was conducted to verify the
effectiveness of multi-scale structure in our model.

3) Multi-Scale Residual Block combined with Attention
Mechanism (MSAM)

The attention mechanism is a simulation model of the at-

tention of the human brain, and a weighted change strategy is
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Fig. 6. The original module (left) and our improved module (right).

pplied to the data to be processed. It shows good adaptability
nd gains in computer vision tasks [58,59]. In the SE module, the
irst operation is the squeeze. It performs feature compression
rom the spatial dimension, and pools the information of each
hannel into real numbers through global average pooling. As
hown in Fig. 6, we changed the global average pooling value to
he sum of the global maximum pooling value to consider the
ackground and texture information of the image. This value has
global receptive field. The global information of the cth feature
ap of this layer is recorded as zc .

zc = Fsq (uc) =
1

H × W

H∑
i=1

W∑
j=1

uc (i, j) + max
i,j∈H×W

uc (i, j) (3)

Among them, the spatial dimension of the input feature map
s recorded as H × W , and 1

H×W

∑H
i=1

∑W
j=1 uc (i, j) is the global

verage pooling, and it means summing up all pixel values uc (i, j)
n the spatial dimension H × W and then solving the average
alue, which can preserve the background information of the
mage. maxi,j∈H×W uc (i, j) is the global maximum pooling, and it
means solving the max value of all pixel values uc (i, j) in the
spatial dimension H × W , which can extract texture information
from image.

The second operation is the excitation, which generates
weights for each feature channels through w, where w is learned
o explicitly model the correlation between feature channels.

= Fex (z,W ) = σ (g (z,W )) = σ (W2δ (W1z)) (4)

Finally, the reweight operation takes the weight of the ex-
citation output as the importance of each feature channel, and
then multiplies the channel-by-channel weighting to the previous
feature to complete the re-calibration of the original feature in
the channel dimension. Among them, sc is the weight value
obtained in the excitation operation, and uc is a two-dimensional
matrix representing the information of the cth channel.

Xc = Fscale (uc, sc) = uc · sc (5)

To solve the problem of enormous resource consumption for
network training caused by a large number of ResNet param-
eters, we introduce the channel split strategy in the residual
6

Fig. 7. The structure of MSAM.

etwork layer, dividing the channel into small convolution kernel
roups of the same size for different convolution operations. The
E module can explicitly model the interdependence between
hannels, and automatically acquire important features between
ach channel by learning. It follows this idea to promote useful
eatures while suppressing features that are less useful for the
ask. So, we use the channel attention mechanism to determine
he weight ratio between channels. The structure of MSAM is
hown in Fig. 7.

.3. Activation function

The activation function maps the input of the neuron to the
utput, increasing the nonlinear changeability of the neural net-
ork model. Mish is a self-regularized non-monotonic neural
ctivation function [60]. Its formula is defined as:

ish = x ∗ tanh
(
ln

(
1 + ex

))
(6)

The curves of ReLU and Mish are shown in Fig. 8. We can find
that compared with ReLU at the negative zero boundaries, Mish
allows a slightly negative value to obtain a better gradient flow. A
smoother activation function can make the information go deeper
into the neural network and improve generalization and accuracy,
so we replace ReLU with Mish in MSCNet. It can benefit from
Mish, although it is limited. We demonstrate this in the ablation
study in Section 4.

3.4. Loss function

Cross entropy is a concept in Shannon’s information theory,
which mainly measures the information difference between two
probability distributions. The smaller the value of cross-entropy
is, the closer the two probability distributions are. Compared with
kullback leibler divergence, cross entropy has simpler operations
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Fig. 8. The curves of ReLU and Mish.
nd faster operations. Another benefit is that the use of the
igmoid function can avoid the problem of decreasing the learn-
ng rate of the mean square error loss function during gradient
escent due to the learning rate can be controlled by the output
rror. So, the cross-entropy loss function was used in our model.
ssuming that p is the probability of the expected output, q is the
robability of the actual output, and H (p, q) is the cross-entropy,
hen:

(p, q) = −

∑
x

p (x) log q (x) (7)

. Experiments and discussion

In this section, experimental setting and assessment criteria
re introduced briefly, and then we will present some ablation
xperiments to illustrate the effectiveness of each module in
ur method, finally our method is compared with the previous
pproaches to evaluate its performance.

.1. Experimental setting

The experiments in this paper were conducted in a server
nvironment configured with an NVIDIA DXG-1 based on the
buntu 16.04 and a Tesla P100 GPU. SPM12 were used for the
edical processing of data. Our method was implemented based
n PyTorch and Python3.5. The parameters of our model were
et as follows: batch size was set to 16, the optimizer of the
raining network was Adam, the decay rate was 1e-5, the number
f epochs was 60, and the loss function as Cross-Entropy Loss. The
earning rate was initialized to 2.5e−4, and reduced by half every
5 epochs.

.2. Assessment criteria

We evaluated the performance of our model by classification
ccuracy (ACC), specificity (SPE), sensitivity (SEN), and area under
he ROC curve (AUC). Among them, TP, FN, TN, and FP represent
rue positive, false negative, true negative, and false positive,
espectively. Our final evaluation indicators are calculated based
n each volume. We took the average of the slice labels obtained
rom the test as the final single volume label.

CC =
TP + TN

TP + TN + FP + FN
(8)

SEN =
TP

(9)

TP + FN

7

Table 3
ACC, SEN, SPE and AUC of various classification methods for AD, MCI, and NC
in GM.

Models ACC (%) SPE (%) SEN (%) AUC

AD
vs NC

ResNet-50 94.80 99.03 96.52 0.96
ResNet-50+MSRB 96.87 99.56 97.36 0.97
MSCNet 97.91 99.89 98.99 0.99
MSCNet-U 97.91 99.58 97.29 0.96

AD
vs MCI

ResNet-50 90.74 92.36 90.47 0.94
ResNet-50+MSRB 92.60 95.32 92.31 0.96
MSCNet 94.44 98.52 94.91 0.97
MSCNet-U 93.52 96.82 92.98 0.96

MCI
vs NC

ResNet-50 87.96 90.25 84.62 0.92
ResNet-50+MSRB 89.81 91.32 86.18 0.94
MSCNet 90.74 93.65 89.36 0.95
MSCNet-U 89.81 92.14 88.69 0.94

SPN =
TN

TN + FP
(10)

4.3. Ablation study

To illustrate the effectiveness of the multi-scale resnet block,
the attention mechanism, the slices on 3D volume labels and Mish
in our method, ablation studies were conducted in this part and
all methods took the same testing subjects for fair comparison.

1) The effectiveness of MSRB. MSRB represents the network
model where the bottleneck module is improved into a multi-
scale module. In Tables 3 and 5, we can see from the table that the
MSRB has improved performance over the baseline ResNet-50. In
the MCI/NC identification experiments of GM and WM, the multi-
scale structure improved the classification accuracy of ResNet-50
by 1.85%.

To further verified the effectiveness of MSRB, a new_MSRB is
designed by convolution kernels of different sizes. The structure
of new_MSRB is shown in Fig. 9, experiments are also conducted.
The result is shown in Table 4 and MSCNet is made of MSRB,
MnSCNet is made of new_MSRB. From Table 4, we can easily
find that MSCNet and MnSCNet have the similar accuracy in the
MCI/NC of WM data, but MnSCNet need more time than MSCNet.
And compared with MnSCNet, MSCNet has fewer Params and
FLOPs.

2) The effectiveness of the attention mechanism. In Tables 3

and 5, MSCNet is an MSRB network model that integrates the
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Fig. 9. The structure of new_MSRB.

able 4
he Params, FLOPs, Acc and running time of MnSCNet and MSCNet in the MCI/NC
f WM data.

MnSCNet MSCNet

Params 98.5 × 106 20.3 × 106

FLOPs 12.4 × 109 2.8 × 109

ACC (%) 92.61 92.59
Time (ms) 96.3 59.2

Table 5
ACC, SEN, SPE and AUC of various classification methods for AD, MCI, and NC
in WM.

Models ACC (%) SPE (%) SEN (%) AUC

AD
vs NC

ResNet-50 95.83 98.63 95.02 0.96
ResNet-50+MSRB 97.91 99.06 96.66 0.98
MSCNet 98.96 99.21 98.29 0.99
MSCNet-U 97.91 98.36 96.25 0.98

AD
vs MCI

ResNet-50 91.67 90.34 90.01 0.95
ResNet-50+MSRB 93.51 93.62 91.85 0.97
MSCNet 95.37 97.19 93.95 0.98
MSCNet-U 93.51 94.54 92.19 0.97

MCI
vs NC

ResNet-50 88.89 88.85 83.82 0.93
ResNet-50+MSRB 90.74 90.65 86.08 0.95
MSCNet 92.59 92.45 88.96 0.96
MSCNet-U 91.67 91.86 87.31 0.95

channel attention mechanism. In MCI/NC identification experi-
ments of GM, the introduction of channel attention mechanism
improved the final classification accuracy by 0.93%. In the MCI/NC
identification experiments of GM, the final classification accuracy
was improved by 1.86%. The experimental results proves that the
channel attention mechanism we added makes the model benefit
from it.

3) The effectiveness of slices on 3D volume labels. As shown
n Tables 3 and 5, the results of MSCNet-U on WM and GM are
8

Table 6
The MCI/NC of WM data, ACC and model test time comparison when the
activation function is ReLU and Mish.

MSCNet-ReLU MSCNet-Mish

ACC (%) 91.66 92.60
Time (ms) 48.60 59.20

Table 7
The Params, FLOPs and memory of ResNet-50 and our Method.

ResNet-50 MSCNet

Params 25.5 × 106 20.3 × 106

FLOPs 4.1 × 109 2.8 × 109

Memory 109.15M 78.03M

Table 8
The accuracy and standard deviation of Our method and ResNet-50 in the
MCI/NC of WM and GM.
Data Model Acc Std

GM MSCNet 90.74 0.0071
ResNet-50 87.96 0.2807

WM MSCNet 92.59 0.0018
ResNet-50 88.85 0.3394

very close to MSCNet. Moreover, the main structures of the two
network models are the same. The experimental results show that
it is reasonable to select 20 continuous slices on the 3D volume
in the experimental preprocess stage. As shown in Fig. 10(a) and
Fig. 10(b), ROC curves of ResNet50, MSRB, and MSCNet in the
MCI/NC control group on the GM and WM datasets are plotted. It
can be seen from Fig. 9 that the ROC curve corresponding to the
MSCNet model proposed in this paper is closest to the left and
upper boundaries and has the best performance.

4) The effectiveness of Mish. To evaluate the effectiveness
of Mish in MSCNet, we performed two sets of experiments in
MCI/NC in WM: one set used ReLU, and the other set used
Mish. The results are shown in Table 6, The replacement of Mish
improves the classification accuracy by 0.94%. However, Mish
consumes a large amount of calculation time.

4.4. Result analysis

To evaluate the performance of our method, our method was
compared with ResNet-50 and the state-of-the-art methods. We
compared the number of params, FLOPs and memory of the
MSCNet and ResNet-50. The results are shown in Table 7. From
Table 7, we can see that the MSCNet proposed by ResNet-50
as the backbone network has different degrees of reduction in
params and FLOPS and memory, which meets the definition of
lightweight.

The performance of our method and ResNet-50 was verified
by five-fold cross-validation. The experimental results are shown
in Table 8, we can find that the accuracy of our method is higher
than ResNet-50 and the standard deviation of our method is
lower than ResNet-50 in the MCI/NC group of WM and GM.
Furthermore, we use the method of randomly extracting data
to conduct 20 experiments independently, in which ResNet-50
and our method use the same test set and training set for each
experiment. Then we calculated the p values of the two methods
by T-test, and its value was 0.03. So, there is statically significant
difference between ResNet-50 and our method.

The experimental results of our method and the state-of-art
methods are shown in Table 9, we also listed the size of the
dataset and the characteristic forms used by these methods. It
can be seen that some researchers extracted ROIs such as the

hippocampus in the image, and some researchers send the entire
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Fig. 10. The ROC curves for the classification between MCI and NC in GM (a) and WM (b).
Table 9
The results of each method (%) in the AD/NC, AD/MCI and MCI/NC.
Articles Content Data size AD vs NC AD vs MCI MCI vs NC

Altaf et al. [61] GM+WM+CSF 92AD+105MCI+90NC 97.80 85.3 91.8
Suk et al. [17] 93ROIs 51AD+99MCI+52NC 98.80 83.7 90.7
Shi et al. [62] Full brain 51AD+99MCI+52NC 97.13 – 87.24
Sarraf et al. [63] Full brain 28AD+15NC 96.86 – 74.37
Liu et al. [18] ROI 93AD+204MCI+100NC 93.26 – –
Fang et al. [30] Full brain 93AD+204MCI+100NC 99.27 92.57 90.35
Our method (GM) GM 160AD+200MCI+160NC 97.91 94.44 90.74
Our method (WM) WM 160AD+200MCI+160NC 98.96 95.37 92.60
.

image to CNNs for training. In our method, we segmented GM
andWM fromMRI images and conducted experiments separately.
The total number of datasets we use is far greater than of other
researchers. Moreover, in the AD/NC group, the identification of
the AD and NC brain images is relatively high, so the ACC is
relatively high. In the AD/MCI group, the difference of brain image
structure was further reduced, and the ACC began to decrease,
but the ACC of our model on GM and WM was 94.44% and
95.37% respectively, which were both higher than other methods
in the table. In the MCI/NC group, the brain image structure is
very close, and this stage is of great significance for the clinical
diagnosis of AD. The ACC of our method on WM reaches 92.60%,
which is improved by 0.8% on the method proposed by Altaf
et al. [61]. Based on these results, we believe that the MSCNet
model has a better performance than other methods, verifying
the effectiveness of MSCNet for AD diagnosis.

In order to demonstrate the generalizability of our method,
dditional experiments were performed on a larger dataset con-
aining only MRI images, called the multi-atlas label propagation
ith expectation–maximization (MALPEM) dataset, which avail-
ble on the website https://biomedia.doc.ic.ac.uk/software/malp-
m/. The initial MRI data of AD that used in the experiment
ncluding 1355 AD, and 1506 NC were all from the MALPEM.
he data was also preprocessed by SPM, and the clearest brain
tructures were taken as the experimental WM and GM datasets.
he ratio of training subsets to test subsets in our experiment is
:3. When training and testing, we strictly divided the training
ubsets and test subsets according to the slices under the same
olume. The results of our method and ResNet-50 are shown in
able 10, we can easily find that ACC, SPE and SEN of our method
re higher than those of ResNet-50 in both GM and WM. So,
ompared with ResNet-50, our method has better generalization
bility.
9

Table 10
ACC, SEN and SPE of ResNet-50 and Our method for AD and NC in WM and GM
Data Model ACC (%) SPE (%) SEN (%)

WM ResNet-50 96.01 98.95 96.62
Our method 98.85 99.39 98.71

GM ResNet-50 95.88 98.95 97.05
Our method 98.11 99.91 97.95

5. Conclusion and future work

We propose a model named MSCNet for AD diagnosis. Com-
pared with the previous simple extraction of ROIs such as the
hippocampus or sending raw AD data to CNNs for training, we
first segment the MRI data into WM and GM. Then, a new and
efficient network architecture with a multi-scale structure and
channel attention mechanism is introduced to accurately classify
images. Extensive experiments show that our method achieve a
good performance in AD diagnosis, and its model size is satisfac-
tory. In addition, experiments prove that WM is more effective
in the diagnosis of AD. But the data preprocessing and model
training stages in our method are carried out separately. There-
fore, we will build a fully-automated system that includes data
preprocessing and lightweight models to achieve the effect of
assisting medical diagnosis.
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